Collagen Peptides

[1] https://pubmed.ncbi.nlm.nih.gov/30783776/
[2] https://pubmed.ncbi.nlm.nih.gov/34491424/ 

Cissus Quadrangularis

[1] https://www.researchgate.net/profile/Anoop-Austin/publication/343567814_American_Journal_of_Clinical_Research_and_Reviews_ISSN2576-0505/links/5f31f990458515b729154e37/American-Journal-of-Clinical-Research-and-Reviews-ISSN2576-0505.pdf

[2] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784127/

[3]https://www.tandfonline.com/doi/abs/10.3810/psm.2013.09.2021

https://www.researchgate.net/profile/Anoop-Austin/publication/343567814_American_Journal_of_Clinical_Research_and_Reviews_ISSN2576-0505/links/5f31f990458515b729154e37/American-Journal-of-Clinical-Research-and-Reviews-ISSN2576-0505.pdf

BPC-157 and TB500

[1] C.-H. Chang, W.-C. Tsai, M.-S. Lin, Y.-H. Hsu, and J.-H. S. Pang, "The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration," J. Appl. Physiol., vol. 110, no. 3, pp. 774-780, Oct. [Physiology.org]

[2] J. Kim and Y. Jung, "Potential Role of Thymosin Beta 4 in Liver Fibrosis," Int. J. Mol. Sci., vol. 16, no. 5, pp. 10624- 10635, May 2015. [NCBI]

[3] C.-H. Chang, W.-C. Tsai, Y.-H. Hsu, and J.-H. S. Pang, "Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts," Mol. Basel Switz., vol. 19, no. 11, pp. 19066-19077, Nov. 2014. [NCBI]

[4] Song, Ran & Choi, Hyun & Yang, Hyung-In & Yoo, Myung & Park, Yong-Beom & Kim, Kyoung. (2012). Association between serum thymosin ß4 levels of rheumatoid arthritis patients and disease activity and response to therapy. Clinical rheumatology. 31. 1253-8. 10.1007/s10067-012-2011-7. [Research Gate]

[5] Philp, D., et al. "Thymosin 34 Promotes Angiogenesis, Wound Healing, and Hair Follicle Development." Mechanisms of Aging and Development, vol. 125, no. 2, Feb. 2004, pp. 113-115, 10.1016/.mad.2003.11.005. (PubMed]

[6] T. Huang et al., "Body protective compound-157 enhances alkali-burn wound healing in vivo and promotes proliferation, migration, and angiogenesis in vitro," Drug Des. Devel. Ther., vol. 9, pp. 2485-2499, 2015. [PubMed]

[7], pp. 774-780, Oct. 2010. [PubMed] [8] Y.-L. Hu et al., "FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells," Sci. Rep. vol. 4, p. 6024, Aug. 2014. [Nature.com]

[9] P. Sikiric et al., "Novel Cytoprotective Mediator, Stable Gastric Pentadecapeptide BPC 157. Vascular Recruitment and Gastrointestinal Tract Healing," Curr. Pharm. Des., vol. 24, no. 18, pp. 1990-2001, 2018. [PubMed]

[10] - Vitam Horm. 2016;102:251-75. doi: 10.1016/bs.vh.2016.04.005. Epub 2016 May 24. Thymosin ß4 Promotes Dermal Healing. Kleinman HK], Sosne G2

[11] F. Amic et al., "Bypassing major venous occlusion and duodenal lesions in rats, and therapy with the stable gastric pentadecapeptide BC 157, L-NAME and L-arginine," World J. Gastroenterol., vol. 24, no. 47, pp. 5366-5378, Dec. 2018. [PubMed]

[12] K. Skrlec et al., "Engineering recombinant Lactococcus lactis as a delivery vehicle for BPC-157 peptide with antioxidant activities," Appl. Microbiol. Biotechnol., vol. 102, no. 23, pp. 0103-10117, Dec. 2018. [PubMed]

[13] S. Seiwerth et al., "BPC 157 and Standard Angiogenic Growth Factors. Gastrointestinal Tract Healing, Lessons from Tendon, Ligament, Muscle and Bone Healing," Curr. Pharm. Des., vol. 24, no. 18, pp. 1972-1989, 2018. [PubMed]

[14] - Expert Opin Biol Ther. 2015;15 Suppl 1:5139- 45.do:10.1517/14712598.2015. 1011617. Epub 2015 Jun 22. Advances in the basic and clinical applications of thymosin B4. Goldstein AL1, Kleinman HK.

[15] - J Orthop Res. 2014 Oct;32(10):1277-82. doi: 10.1002/jor.22686. Epub 2014 Jul 8. Thymosin ß4 administration enhances fracture healing in mice. Brady RD1, Grills BL, Schuijers JA, Ward AR, Tonkin BA, Walsh NC, McDonald SJ.

 [16]-Neuropharmacology. 2014 Oct;85:408-16. doi: 10.1016/.neuropharm.2014.06.004. Epub 2014 Jun 14. Beneficial effects of thymosin B4 on spinal cord injury in the rat. Cheng P1, Kuang F1, Zhang H', Ju G2, Wang J?.

[17] A. Duzel et al., ' "Stable gastric pentadecapeptide BPC 157 in the treatment of colitis and ischemia and reperfusion in rats: New insights," World J. Gastroenterol., vol. 23, no. 48, pp. 8465-8488, Dec. 2017. [PubMed]

[18] M.-J. Hsieh et al., "Therapeutic potential of pro- angiogenic BPC157 is associated with VEGFR2 activation and up-regulation," J. Mol. Med. Berl. Ger., vol. 95, no. 3, pp. 323-333, 2017. [PubMed]

[19] Z. Grabarevic et al., "The influence of BPC 157 on nitric oxide agonist and antagonist induced lesions in broiler chicks," J. Physiol. Paris, vol. 91, no. 3-5, pp. 139-149, Oct. 1997. [PubMed]

[20] - Expert Opin Biol Ther. 2015;15 Suppl 1:5139-45.do:10.1517/14712598.2015. 1011617. Epub 2015 Jun 22. Advances in the basic and clinical applications of thymosin B4. Goldstein AL1, Kleinman HK.

[21] - Lymphokine Res. 1989 Winter;8(4):383-91. Modulation of thymosin alpha 1 and thymosin beta 4 levels and peripheral blood mononuclear cell subsets during experimental rhinovirus colds. Hsia J', Sztein MB, Naylor PH, Simon GL, Goldstein AL, Hayden FG.

GHK-CU References

[1] L. DO. Sever'yanova and M. E. Dolgintsev, "Effects of Tripeptide Gly-His-Lys in Pain-Induced Aggressive- Defensive Behavior in Rats," Bull. Exp. Biol. Med., vol. 164, no. 2, pp. 140-143, Dec. 2017. [Springer]

[2] L. DO. Sever'yanova and D. V. Plotnikov, "Binding of Glyprolines to L-Arginine Inverts Its Analgesic and Antiagressogenic Effects," Bull. Exp. Biol. Med., vol. 165, no. 5, pp. 621-624, Sep. 2018. [PubMed]

[3] X. Wang et al., "GHK-Cu-liposomes accelerate scald wound healing in mice by promoting cell proliferation and angiogenesis," Wound Repair Regen. Off. Publ. Wound Heal. Soc. Eur. Tissue Repair Soc., vol. 25, no. 2, pp. 270- 278, 2017. [PubMed]

 [4] L. Pickart, J. M. Vasquez-Soltero, and A. Margolina, "GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration," BioMed Res. Int., vol. 2015, p. 648108, 2015. [BioMed Research International]

[5] L. Pickart, J. M. Vasquez-Soltero, and A. Margolina, "The Effect of the Human Peptide GHK on Gene Expression Relevant to Nervous System Function and Cognitive Decline," Brain Sci., vol. 7, no. 2, Feb. 2017. [PubMed]

[6] H. Zhang, Y. Wang, and Z. He, "Glycine-Histidine-Lysine (GHK) Alleviates Neuronal Apoptosis Due to Intracerebral Hemorrhage via the miR-339-5p/VEGFA Pathway," Front. Neurosci., vol. 12, p. 644, 2018. [PubMed]

Nitrates

Glenn JM;Gray M;Wethington LN;Stone MS;Stewart RW;Moyen NE;, G. J. M. G. M. W. L. N. S. M. S. S. R. W. M. N. E. (2015). Acute citrulline malate supplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained females. European journal of nutrition. https://pubmed.ncbi.nlm.nih.gov/26658899. 

J;, W. B. K. A. N. W. K. S. (2015). Effects of supplemental citrulline malate ingestion during repeated bouts of lower-body exercise in advanced weightlifters. Journal of strength and conditioning research. https://pubmed.ncbi.nlm.nih.gov/25226311/. 

W;, W. B. K. A. N. L. (2016). Effects of Supplemental Citrulline-Malate Ingestion on Blood Lactate, Cardiovascular Dynamics, and Resistance Exercise Performance in Trained Males. Journal of dietary supplements. https://pubmed.ncbi.nlm.nih.gov/25674699/. 

Schwedhelm E;Maas R;Freese R;Jung D;Lukacs Z;Jambrecina A;Spickler W;Schulze F;Böger RH;, S. E. M. R. F. R. J. D. L. Z. J. A. S. W. S. F. B. R. H. (2008). Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism. British journal of clinical pharmacology. https://pubmed.ncbi.nlm.nih.gov/17662090/. 

M;, K. (1999). Nitric oxide metabolism and breakdown. Biochimica et biophysica acta. https://pubmed.ncbi.nlm.nih.gov/10320663/. 

Coggan, A. R., & Peterson, L. R. (2018). Dietary Nitrate Enhances the Contractile Properties of Human Skeletal Muscle. Exercise and Sport Sciences Reviews. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6138552/. 

Hernández A;Schiffer TA;Ivarsson N;Cheng AJ;Bruton JD;Lundberg JO;Weitzberg E;Westerblad H;, H. A. S. T. A. I. N. C. A. J. B. J. D. L. J. O. W. E. W. H. (2012). Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle. The Journal of physiology. https://pubmed.ncbi.nlm.nih.gov/22687611/. 

J. Bailey, S. (2011). The nitrate-nitrite-nitric oxide pathway: Its role in human exercise physiology20. Taylor & Francis. https://www.tandfonline.com/doi/abs/10.1080/17461391.2011.635705. 

Jones, A. M. (2014, May). Dietary nitrate supplementation and exercise performance. Sports medicine (Auckland, N.Z.). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4008816/. 

Coggan, A. R., Leibowitz, J. L., Kadkhodayan, A., Thomas, D. P., Ramamurthy, S., Spearie, C. A., Waller, S., Farmer, M., & Peterson, L. R. (2015, August 1). Effect of acute dietary nitrate intake on maximal knee extensor speed and power in healthy men and women. Nitric oxide : biology and chemistry. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362985/. 

Mosher SL;Sparks SA;Williams EL;Bentley DJ;Mc Naughton LR;, M. S. L. S. S. A. W. E. L. B. D. J. M. N. L. R. (2016). Ingestion of a Nitric Oxide Enhancing Supplement Improves Resistance Exercise Performance20. Journal of strength and conditioning research. https://pubmed.ncbi.nlm.nih.gov/27050244/. 

Larsen FJ;Schiffer TA;Borniquel S;Sahlin K;Ekblom B;Lundberg JO;Weitzberg E;, L. F. J. S. T. A. B. S. S. K. E. B. L. J. O. W. E. (2011). Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell metabolism. https://pubmed.ncbi.nlm.nih.gov/21284982/. 

Richards, J. C., Racine, M. L., Hearon, C. M., Kunkel, M., Luckasen, G. J., Larson, D. G., Allen, J. D., & Dinenno, F. A. (2018, January). Acute ingestion of dietary nitrate increases muscle blood flow via local vasodilation during handgrip exercise in young adults. Physiological reports. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789727/. 

Bailey SJ;Fulford J;Vanhatalo A;Winyard PG;Blackwell JR;DiMenna FJ;Wilkerson DP;Benjamin N;Jones AM;, B. S. J. F. J. V. A. W. P. G. B. J. R. D. M. F. J. W. D. P. B. N. J. A. M. (2010). Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. Journal of applied physiology (Bethesda, Md. : 1985). https://pubmed.ncbi.nlm.nih.gov/20466802/. 

Whitfield, J., Ludzki, A., Heigenhauser, G. J. F., Senden, J. M. G., Verdijk, L. B., van Loon, L. J. C., Spriet, L. L., & Holloway, G. P. (2016, January 15). Beetroot juice supplementation reduces whole body oxygen consumption but does not improve indices of mitochondrial efficiency in human skeletal muscle. The Journal of physiology. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4713742/. 

Larsen FJ;Schiffer TA;Borniquel S;Sahlin K;Ekblom B;Lundberg JO;Weitzberg E;, L. F. J. S. T. A. B. S. S. K. E. B. L. J. O. W. E. (2011). Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell metabolism. https://pubmed.ncbi.nlm.nih.gov/21284982/. 

GS;, C. P. T. G. S. J. Z. (2015). The effect of l-citrulline and watermelon juice supplementation on anaerobic and aerobic exercise performance. Journal of sports sciences. https://pubmed.ncbi.nlm.nih.gov/25517106/. 

Gonzalez AM;Spitz RW;Ghigiarelli JJ;Sell KM;Mangine GT;, G. A. M. S. R. W. G. J. J. S. K. M. M. G. T. (2018). Acute Effect of Citrulline Malate Supplementation on Upper-Body Resistance Exercise Performance in Recreationally Resistance-Trained Men. Journal of strength and conditioning research. https://pubmed.ncbi.nlm.nih.gov/29210953/. 

Hwang, P., Morales Marroquín, F. E., Gann, J., Andre, T., McKinley-Barnard, S., Kim, C., Morita, M., & Willoughby, D. S. (2018, June 27). Eight weeks of resistance training in conjunction with glutathione and L-Citrulline supplementation increases lean mass and has no adverse effects on blood clinical safety markers in resistance-trained males. Journal of the International Society of Sports Nutrition. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020314/. 

Campbell B;Roberts M;Kerksick C;Wilborn C;Marcello B;Taylor L;Nassar E;Leutholtz B;Bowden R;Rasmussen C;Greenwood M;Kreider R;, C. B. R. M. K. C. W. C. M. B. T. L. N. E. L. B. B. R. R. C. G. M. K. R. (2006). Pharmacokinetics, safety, and effects on exercise performance of L-arginine alpha-ketoglutarate in trained adult men. Nutrition (Burbank, Los Angeles County, Calif.). https://pubmed.ncbi.nlm.nih.gov/16928472/. 

JE;, L. J. R. U. R. A. (2012). Nitric oxide and voluntary exercise together promote quadriceps hypertrophy and increase vascular density in female 18-mo-old mice. American journal of physiology. Cell physiology. https://pubmed.ncbi.nlm.nih.gov/22322971/. 

Schoenfeld, B. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. Journal of strength and conditioning research. https://pubmed.ncbi.nlm.nih.gov/20847704/. 

Cholewa, J., Trexler, E., Lima-Soares, F., Pessôa, K. de A., Sousa-Silva, R., Santos, A. M., Zhi, X., Nicastro, H., Cabido, C. E. T., Freitas, M. C. de, Rossi, F., & Zanchi, N. E. (2018, October 10). Effects of dietary sports supplements on metabolite accumulation, vasodilation and cellular swelling in relation to muscle hypertrophy: A focus on "secondary" physiological determinants. Nutrition. https://www.sciencedirect.com/science/article/abs/pii/S0899900718303939. 

Neale A Tillin 1, Sarah Moudy, Kirsty M Nourse, Christopher J Tyler, N. A. T. 1, S. M. K. M. N. C. J. T. (2018). Nitrate Supplement Benefits Contractile Forces in Fatigued but Not Unfatigued Muscle. Medicine and science in sports and exercise. https://pubmed.ncbi.nlm.nih.gov/29727405/. 

Husmann, F., Bruhn, S., Mittlmeier, T., Zschorlich, V., & Behrens, M. (2019, March 22). Dietary Nitrate Supplementation Improves Exercise Tolerance by Reducing Muscle Fatigue and Perceptual Responses. Frontiers. https://www.frontiersin.org/articles/10.3389/fphys.2019.00404/full. 

Lactate Research Citations

Nalbandian, M., & Takeda, M. (2016, October 8). Lactate as a Signaling Molecule That Regulates Exercise-Induced Adaptations. Biology. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5192418/. 

Rabinowitz, J. D., & Enerbäck, S. (2020, July 20). Lactate: the ugly duckling of energy metabolism. Nature News. https://www.nature.com/articles/s42255-020-0243-4. 

Brooks, G. A. (2018). The Science and Translation of Lactate Shuttle Theory. Cell Metabolism, 27(4), 757–785. https://doi.org/10.1016/j.cmet.2018.03.008 

Brooks, G. A. (2009, November 30). Cell–cell and intracellular lactate shuttles. The Physiological Society. https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2009.178350. 

Brooks, G. A. (1985). Lactate:Glycolytic End Product and Oxidative Substrate During Sustained Exercise in Mammals — The “Lactate Shuttle.” Proceedings in Life Sciences, 208–218. https://doi.org/10.1007/978-3-642-70610-3_15 

Brooks, G. A. (2002, April 1). Lactate shuttles in Nature. Portland Press. https://portlandpress.com/biochemsoctrans/article-abstract/30/2/258/63601/Lactate-shuttles-in-Nature?redirectedFrom=fulltext.